
62 The Delphi Magazine Issue 53

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

QuickReport And Printers

QHow can I programmatically
tell QuickReports which

printer to use when printing,
without forcing the user to open
up the standard printer setup
dialog?

ATQuickRep component has a
PrinterSettings property,

which itself has a PrinterIndex
property. This corresponds ex-
actly to the PrinterIndex property
of the normal Delphi Printerobject
(from the Printers unit).

As an example, the project
QRPrinters.Dpr on this month’s
disk shows all available printers in
a listbox. This is done by copying
the Printers property of the
Printer object, which is a TStrings
object, to the Items property of the
listbox and setting the listbox’s
ItemIndex to match Printer.
PrinterIndex.

The user can select a printer
from the listbox and the listbox’s
ItemIndex property is assigned to
the PrinterIndex property of the
aforementioned QuickReports
PrinterSettings property and also
the normal Printer object (ensur-
ing non-QuickReports printing also
goes to the specified printer). They
can then press a button to print a
simple report (a trivial report
based on a DBDEMOS table) and it will
go to the selected printer. Listing 1
shows the key parts of the code.

File Copying

QI want to incorporate a
backup facility by copying

my application’s database files to a
Zip Drive, but I can’t seem to find a
way of doing this from within the
application itself. In the Delphi
help files there is mention of a
Win32 API CopyFile function, but
without any indication of the

syntax required to use it. Once
again, can you help?

AA good source of file manipu-
lation routines (including a

CopyFile routine) can be found in
the FMXUtils unit of the FilManEx
demo (a file manager example
project). This demo can be found
in Delphi’s Demos\Doc\FilManEx
directory. Nick Hodges mentioned
this unit in the Tips & Tricks col-
umn all the way back in Issue 2 of
The Delphi Magazine. Alterna-
tively, you could use either of the
file copying routines listed in my
File Handling 5: Streaming Compo-
nents article from Issue 10.

Neither of these solutions use
the Win32 CopyFile API. Instead
they use Delphi file handling rou-
tines or file streams to do the job.
However, using this API could sim-
plify the implementation of a file
copying routine significantly, since
it is fully self-contained. To get to
the Windows API help for this rou-
tine, simply type it into a blank area
in the Delphi editor and press F1. If
you are given an option of going to

the MAPI help file or the Win32
help file (as happens with Delphi
2), choose the latter.

The API help, as usual, is written
for C programmers, and shows the
CopyFile API declared as shown in
Listing 2.

This is saying it takes two C
strings for the source and destina-
tion filenames, and a Boolean that
indicates what to do if the target
file exists. A value of True means
the function will fail, returning
False, whereas a value of False
means the file will be overwritten.
For many Delphi programmers,
looking at C syntax just causes
headaches, so it is always sensible
to look at the Delphi definition of it.

Pressing the Quick Infobutton in
the API help file (see Figure 1) tells
us that CopyFile is supported on
Windows 95 (and therefore Win-
dows 98) and Windows NT, which
is good news. It also says that (for
C programmers) the API informa-
tion is declared in the WinBase.h
header file.

What we as Delphi programmers
need to know is that generally you

procedure TMainForm.FormCreate(Sender: TObject);
begin
//Get list of printers displayed in the listbox on the form
lstPrinters.Items := Printer.Printers;
//Highlight default printer
lstPrinters.ItemIndex := Printer.PrinterIndex

end;
procedure TMainForm.lstPrintersClick(Sender: TObject);
begin
//Record chosen printer as new current printer and as QuickReports target
Printer.PrinterIndex := lstPrinters.ItemIndex
ReportForm.QuickRep1.PrinterSettings.PrinterIndex := lstPrinters.ItemIndex;

end;
procedure TMainForm.btnPrintReportClick(Sender: TObject);
begin
//Print report on newly selected printer
ReportForm.QuickRep1.Print

end;

➤ Listing 1: Telling QuickReports to print to a specified printer.

BOOL CopyFile(
LPCTSTR lpExistingFileName,// pointer to name of an existing file
LPCTSTR lpNewFileName, // pointer to filename to copy to
BOOL bFailIfExists // flag for operation if file exists
);

➤ Listing 2: The C declaration for the Win32 CopyFile API.

64 The Delphi Magazine Issue 53

can work out which unit contains
the import declaration for an API
by seeing which C header file
declares it. Normally, if the API
appears in a unit at all, the unit has
the same name as the header file,
with a few exceptions. So, if the
header file was listed as shellapi.h,
the import unit would be ShellAPI.
If the header file was listed as
mmsystem.h, the import unit
would be MMSystem. The header files
winreg.h, winver.h, winnetwk.h,
wingdi.h, winuser.h and winbase.h
(basically those in the form
winXXXX.h) are dealt with by the
main Windows import unit, automat-
ically added to the uses clause of
each form unit.

To see the Delphi declaration of
CopyFile, open the Windows.pas
unit source file. In Delphi 4 and
later, you can click on the Windows
unit in a uses clause, press
Ctrl+Enter and the file will open
straight away, as the relevant
directory is on the browsing path.
For Delphi 2 and 3, pressing
Ctrl+Enter will show an open
dialog. You will need to navigate to
Delphi’s Source\RTL\Win direc-
tory to find the unit.

Once the unit is open, do a
search to find CopyFile. The
declaration will look like Listing 3.

The two filename parameters
are declared as type PChar and the
Boolean is declared as type BOOL,

which equates to
the Delphi type
LongBool. Having
clarified the situ-
ation, we can
test out the API.

This month’s
disk has a test
project called
CopyAFile.Dpr on it. The simple
user interface has one button that
launches an open dialog so you can
choose a file to copy. It then
launches a save dialog so you can
choose where you want it copied
to. The file is then copied using a
small procedure called FileCopy.
This uses CopyFile to attempt to
copy the file.

If the file already exists, the first
call to CopyFile fails (thanks to the
third parameter being True), and
the Windows GetLastError API will
return ERROR_FILE_EXISTS. Given
this, the user is asked if it is okay to
overwrite the file. If the user says it
is, CopyFile is called again, but with
the last parameter being False. The
FileCopy procedure can be seen in
Listing 4, along with the code that

calls it after showing the two
dialogs.

CopyFile has an associated rou-
tine called CopyFileEx. This
extended version supports
callbacks, which would allow you
to display file copy progress infor-
mation. However, it is only sup-
ported in Windows NT 4 and
higher, not in Windows 95 or 98. So
instead of looking at that API, we
will try the Windows shell generic
file operation API, SHFile-
Operation. This is what Windows
Explorer uses to copy, delete,
rename and move files, and so can
give progress feedback automati-
cally (the dialog with the docu-
ment flying between folders).

To copy a file, you pass a suit-
ably set up SHFILEOPSTRUCT record
(called a TSHFileOpStruct by all
32-bit versions of Delphi) to
SHFileOperation. The fields of this
record are as follows. The Wnd field
needs the window handle of a
form, so any dialogs (such as con-
firmation or progress) can be
located sensibly on the screen and
be properly modal. wFunc indicates
the type of operation, which can be
FO_COPY, FO_MOVE, FO_DELETE or
FO_RENAME.

The pFrom field holds the file-
name(s) that need to be copied.
This is a PChar field, and so the file-
names are null-terminated. If there
is more than one file, the filenames
are just appended one after
another. To indicate there are no
more files, the last filename should
be followed by another null termi-
nator character. The pTo field
holds the folder that the file should

➤ Figure 1:
Finding
information
from the
Win32 API
help file.

function CopyFile(
lpExistingFileName, lpNewFileName: PChar;
bFailIfExists: BOOL): BOOL; stdcall;

➤ Listing 3: The Delphi declaration for the Win32 CopyFile API.

procedure FileCopy(const Source, Target: String);
var
LastError: DWord;

begin
if not CopyFile(PChar(Source), PChar(Target), True) then begin
LastError := GetLastError;
//If file exists, check it's okay to overwrite
if LastError = ERROR_FILE_EXISTS then begin
if MessageDlg('Destination file exists. Overwrite?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes then
//If it's okay, then overwrite
Win32Check(CopyFile(PChar(Source), PChar(Target), False))

end else
//If there was some other problem, report it
raise EWin32Error.Create(SysErrorMessage(LastError));

end
end;
procedure TForm1.btnCopyClick(Sender: TObject);
begin
if dlgSource.Execute and dlgTarget.Execute then
FileCopy(dlgSource.FileName, dlgTarget.FileName)

end;

➤ Listing 4: A file copying routine, using the CopyFile API.

January 2000 The Delphi Magazine 65

be copied to (as opposed to the
target filename).

The fFlags field holds whatever
special flags you would like to pass.
These allow you to control
whether confirmations will be
made for file overwrites
(FOF_NOCONFIRMATION), whether a
progress dialog will be displayed,
assuming the file is large enough
(FOF_SILENT), whether filenames
will be shown on the progress
dialog (FOF_SIMPLEPROGRESS), etc.

If the user cancels any operation
during the file copy, the fAny-
OperationAborted field gets set to
True. Finally, the lpszProgress-
Title field points to a string that is
written instead of file names on the
progress dialog, if you specified
the FOF_SIMPLEPROGRESS flag.

So, given a filename and a target
folder, we can copy a file with
SHFileOperation. An open dialog
allows the simple test application
to get a file selected for copying. In
order to select a target folder, a

save dialog does not
really work (it wants a
file name as well). So
we’ll use the SHBrowse-
ForFolder shell API, as
used in last issue’s
Delphi Clinic to
browse for a com-
puter on the network.
This time it will be
used, from within a
function called Get-
Folder, to select a folder. Figure 2
shows the folder browsing dialog.

CopyAFile2.Dpr is the test
project for this file copying
experiment. The useful parts of the
code are shown in Listing 5, the
progress dialog is in Figure 3.

ActiveX Warning

QI have been testing Delphi’s
Web Deployment. I have cre-

ated a simple ActiveForm and

placed one button on it, displaying
Hello World when pressed. The
problem is that when Internet
Explorer loads the ActiveX I get a
Security Warning with the mes-
sage: ‘Do you want to install and run
Simple.ocx. The publisher cannot
be determined due to the problems
below. Authenticode signature not
found’. How do I stop this message
from appearing?

AWhen someone using a Web
browser loads an HTML

page containing a reference to an
ActiveX, the Web browser will
probably try to download the
ActiveX so its code can be exe-
cuted. The problem with this is
that the ActiveX could potentially
contain malicious code that might
do harm to the user’s machine
contents. Internet Explorer
employs security measures to try

➤ Figure 2:
Browsing for
a folder.

uses
ShellAPI, ShlObj;

procedure FileCopy(const Source, Target: String);
var
FOS: TSHFileOpStruct;
SourceLst: String;

begin
FillChar(FOS, SizeOf(FOS), 0);
FOS.Wnd := Application.MainForm.Handle;
FOS.wFunc := FO_COPY;
//File name list must have 2 null terminators. It
//gets 1 anyway. The other we pass in explicitly
SourceLst := Source + #0;
FOS.pFrom := PChar(SourceLst);
FOS.pTo := PChar(Target);
//Uncomment these 2 lines if you do not want the file
//name details shown on the copy progress dialog
//FOS.fFlags := FOF_SIMPLEPROGRESS;
//FOS.lpszProgressTitle := 'Please wait...'
SHFileOperation(FOS);

end;
function GetFolder: String;
var

BrowseInfo: TBrowseInfo;
Folder: array[0..MAX_PATH] of Char;

begin
FillChar(BrowseInfo, SizeOf(BrowseInfo), 0);
BrowseInfo.hwndOwner := Application.MainForm.Handle;
BrowseInfo.lpszTitle := 'Select destination folder';
BrowseInfo.ulFlags := BIF_RETURNONLYFSDIRS or
BIF_DONTGOBELOWDOMAIN;

SHGetPathFromIDList(SHBrowseForFolder(BrowseInfo),
Folder);

Result := Folder;
end;
procedure TForm1.btnCopyClick(Sender: TObject);
var
TargetFolder: String;

begin
if dlgSource.Execute then begin
TargetFolder := GetFolder;
if TargetFolder <> '' then
FileCopy(dlgSource.FileName, TargetFolder)

end
end;

➤ Listing 5: A file copying
routine, using the
SHFileOperation API.

➤ Figure 3: A progress dialog
showing whilst copying a file.

66 The Delphi Magazine Issue 53

and reduce the risk of such
problems.

There are several levels of secu-
rity that you can enable with
Internet Explorer in its Options
dialog. The simplest (but least
secure) way of avoiding the warn-
ing dialog you see is to set the secu-
rity to a lower setting, so no check
is made against binary files. This is
fine if you are confident that all
binary files that will be down-
loaded are harmless, and on an
intranet system, this may be a valid
thing to assume.

However, Microsoft recommend
that you code sign your ActiveX
controls to verify their integrity.
You use Microsoft Authenticode
utilities to generate code signa-
tures, which are sent to a Local
Registration Agency or Certifica-
tion Authority (such as VeriSign or
GTE) who can then issue a Soft-
ware Publisher Certificate. Once
the certificate has been received,
your binary files can be code
signed with more Authenticode
utilities.

Authenticode itself cannot guar-
antee that signed code will do no
harm. However, an Authenticode
signed ActiveX tells the person
downloading it that its manufac-
turer is participating in the infra-
structure of trusted entities. It also
tells the person who the software
publisher is and verifies whether
the file has been tampered with
since it was released by them.

For more information about
Authenticode technology, visit
www.microsoft.com/security.

More information on code sign-
ing can be found in the VeriSign
code signing FAQ at http://
digitalid.verisign.com/id_faqs.htm.

Custom Error Strings
From DLL Routines

QAccording to the MSDN it is
possible to extend the

Windows error handling capabili-
ties (GetLastError and SetLast-
Error) for third-party DLLs. It
should be possible then for any ap-
plication to use SysErrorMessage (if
you stick to Delphi-speak) or the
Windows API to get descriptive er-
ror strings for the error numbers.

But how do you get the string re-
sources linked in with the OS? Is
there some registration required?
It’s mentioned often enough on
Microsoft’s website that you can
do it, but they never explain how.

AWhen Win32 API calls fail,
they typically call SetLast-

Error, passing a Windows error
number, and then return a value of
False. See Issue 51’s Delphi Clinic
for more details on Windows error
numbers.

Application programmers can
spot the False return value, call
GetLastError to find what the error
value was (which clears the last
error) and act accordingly. Delphi
programmers can pass this value
to SysErrorMessage to get a string
describing the problem.

Alternatively, Delphi program-
mers can call RaiseLastWin32Error
instead of calling GetLastError.
This routine calls GetLastError,
passes it to SysErrorMessage and
raises an EWin32Error exception
with the error description as its
message. One last option is to pass
the API’s Boolean return value to
Win32Check. This will also raise an
appropriate exception (through a
call to RaiseLastWin32Error),
assuming the API return value is
False, otherwise it simply returns
True. Win32Check and RaiseLast-
Win32Error were introduced in
Delphi 3.

The question asks how we can
get DLL routines of our own to
make their error descriptions
available. To find out, we need to
look at how SysErrorMessageworks.
The implementation in the
SysUtils unit uses the rather cum-
bersome FormatMessage API, as is
shown in Listing 6.

FormatMessage can be used to get
a Windows system error message,

format a string containing
placeholders (rather like the VCL’s
Format) or, according to the API
help file, get a custom string from
the message-table resource in a
specified module.

So it looks like a DLL routine
could call SetLastError with an
error number and have the
description of the error sitting in a
message-table resource. This
message-table can be in the same
DLL or in a resource-only DLL if
preferred. In the simple example
we will go through here, the
message-table will be in the same
DLL. When a programmer calls the
DLL routine, if it returns False,
they could call FormatMessage with
the appropriate flags and module
handle to get the custom message.

That’s the theory according to
the Win32 API help. Let’s see if it
works. The first thing we need to
do is make a new DLL, with at least
one routine that returns a Boolean
value. If it returns False, it will be
assumed to have called SetLast-
Error. The next thing we need to do
is to work out how to create a
message-table resource.

The downside to this story is
that message-tables are not
catered for at all by Delphi.
Instead, you need the Microsoft
Message Compiler, MC.EXE. This
tool is not supplied with Delphi,
but does come with the
Microsoft’s Platform SDK. You can
find this on one of the many CDs
that come in MSDN Professional or
MSDN Enterprise.

Even with the Message Com-
piler, things are far from rosy.
Borland’s resource compiler,
BRC.EXE, does not understand the
resource script terms that refer to
message-table resources. So again
we have to go to the Platform SDK
and get Microsoft’s resource

function SysErrorMessage(ErrorCode: Integer): string;
var
Len: Integer;
Buffer: array[0..255] of Char;

begin
Len := FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM or
FORMAT_MESSAGE_ARGUMENT_ARRAY, nil, ErrorCode, 0, Buffer,
SizeOf(Buffer), nil);

while (Len > 0) and (Buffer[Len - 1] in [#0..#32, '.']) do
Dec(Len);

SetString(Result, Buffer, Len);
end;

➤ Listing 6: Delphi’s SysErrorMessage routine.

68 The Delphi Magazine Issue 53

compiler, RC.EXE. With MC.EXE
and RC.EXE, we can continue with
the job.

The simple test DLL will have a
routine that accepts one integer
parameter. The value of the integer
is expected to be between 0 and
1,000. If the number is less than
zero, one error will be indicated
(negative values not supported). If
the value is greater than 1,000, a
different error will be reported
(number too big). The DLL project
is on the disk as TheDll.Dpr and the
implementation of its key unit,
TheDLLUnit.Pas, is shown in
Listing 7.

You can see that two constants
are being used, ERROR_NUMBER_NEGA-
TIVE and ERROR_NUMBER_TOO_BIG.
These are defined in the ErrorMsgs
unit, which we will look at shortly.
The DLL project file simply exports
the DoSomething routine, to make it
available to calling applications.

The next step is to implement
the message-table. According to
the Platform SDK, a message table
source file has an .MC file exten-
sion. Assuming you are just inter-
ested in writing English messages,
you need to have repeated sec-
tions in the file, one for each mes-
sage. Each section specifies the
message number, the severity and
symbolic name. This is followed by
an indication of the message’s lan-
guage and the message text. The
section is terminated by a single
dot.

Additional languages would be
defined at the top of the file. The
severity indication can either be
Success, Informational, Warning or
Error, each being pre-defined
symbols. You can also define
additional severity types in the file
header. Since we are defining
strings to describe errors, it makes
sense to mark them with Error. The
sample message-table script
(ErrorMsgs.MC) is in Listing 8.

The file can now be compiled
with the Message Compiler using a
command-line of:

MC ErrorMsgs

This produces three new files. The
first is a resource script
(ErrorMsgs.RC) that must be

compiled with RC.EXE to produce
a .RES file (ErrorMsgs.Res). The
second is a binary file containing
the compiled message-table. The
default file name for English binary
messages is MSG00001.BIN (which
again can be changed by adding an
entry to the header section of the
message-table script file). This file
is referred to in the resource script
file and will be compiled into the
.RES file.

The final file is a C header file
(ErrorMsgs.H) which would ini-
tially appear to bear no relevance
to the Delphi programmer. Initial
appearances are misleading here,
as you need to look in this file to get
the error message ID values. Whilst
Listing 8 specifies ID numbers of 1

and 2, these are not the final
values. These initial values are
combined with the severity value
and an optional facility value
(ignored in this case) to produce a
final message ID. The important
section of the header file can be
seen in Listing 9 (the rest is made
up of informative comments).

This tells you that the two mes-
sage IDs are $C0000001 and
$C0000002 respectively. Since
MC.EXE does not generate a Pascal
unit as well as the C header, this
must be done by hand. The result
is ErrorMsgs.Pas, the unit we
skipped past earlier (see Listing
10). You can see that, as well as
defining the two error number con-
stants, the unit also links in the

interface
uses
Windows;

function DoSomething(Value: Integer): Bool; stdcall;
implementation
uses
Dialogs, DLLConstUnit;

function DoSomething(Value: Integer): Bool;
begin
Result := False;
if Value < 0 then
SetLastError(ERROR_NUMBER_NEGATIVE)

else if Value > 1000 then
SetLastError(ERROR_NUMBER_TOO_BIG)

else begin
Result := True;
ShowMessageFmt('Value passed was %d', [Value])

end
end;

➤ Listing 7: A DLL routine setting custom errors.

MessageId = 1
Severity = Error
SymbolicName = ERROR_NUMBER_NEGATIVE
Language=English
Negative numbers not supported
.
MessageId = 2
Severity = Error
SymbolicName = ERROR_NUMBER_TOO_BIG
Language=English
The number was too big
.

➤ Listing 8: A message-table script.

// MessageId: ERROR_NUMBER_NEGATIVE
//
// MessageText:
//
// Negative numbers not supported
//
#define ERROR_NUMBER_NEGATIVE 0xC0000001L
//
// MessageId: ERROR_NUMBER_TOO_BIG
//
// MessageText:
//
// The number was too big
//
#define ERROR_NUMBER_TOO_BIG 0xC0000002L

➤ Listing 9: The C header created by MC.EXE.

70 The Delphi Magazine Issue 53

message-table resource file. With
this unit written, the DLL project
should compile. The resulting DLL
will have a message-table built
into it.

Now we can write a program to
use the DLL and see how we can
access these messages. A test pro-
ject is supplied on the disk, called
DLLMsgTest.Dpr. This has a
simple form with an edit control
and a button on it. The user can
enter a number into the edit and
press the button. The button’s

event handler translates
the edit contents to a
number and calls the DLL
routine, passing the
number. If the number is
acceptable to the DLL rou-
tine, it displays a nice mes-
sage box and returns True
(Figure 4). However, if the
number is outside accept-
able ranges, the DLL will
call SetLastError, passing
one of our two message
constants.

The required task is to
call the DLL routine and, if
False is returned, get the
last error number and
translate it into a descrip-
tive string (one of those
stored in the message
table). To accomplish this,
the project implements
new versions of Win32Check,
RaiseLastWin32Error and
SysErrorMessage. To accom-
modate custom DLL error

numbers and messages, the new
routines are called Win32DLLCheck,
RaiseLastWin32DLLError and DLL-
ErrorMessage. Each takes an extra
HModule parameter, to indicate
which loaded DLL to look in for the
message strings.

Win32DLLCheck is a copy of the
Win32Check routine. The call it
makes to RaiseLastWin32Error has
been replaced with a call to

unit ErrorMsgs;
{$R ErrorMsgs.Res}
interface
const
ERROR_NUMBER_NEGATIVE = $C0000001;
ERROR_NUMBER_TOO_BIG = $C0000002;

implementation
end.

➤ Listing 10: A Delphi translation
of Listing 9.

➤ Figure 4: Normal action
of the DLL routine.

➤ Figure 5: One of the DLL routine’s
custom error messages.

➤ Figure 6: Another custom error message.

function DoSomething(Value: Integer): Bool; stdcall;
external 'TheDLL.DLL';

procedure TForm1.btnCallDLLClick(Sender: TObject);
begin
Win32DLLCheck(GetModuleHandle('TheDLL.Dll'),
DoSomething(StrToInt(edtNumber.Text)))

end;

➤ Listing 11: Calling the DLL routine and checking for custom errors.

RaiseLastWin32DLLError and the
module handle is passed along to
it. RaiseLastWin32DLLError has the
call to SysErrorMessage replaced
with a call to DLLErrorMessage, with
the module handle passed
through. DLLErrorMessage uses the
FORMAT_MESSAGE_FROM_HMODULE flag
and passes the module handle in to
allow FormatMessage to get the
required message string from the
DLL. For more details of these
replacement utility routines, see
the code on the disk.

Listing 11 shows the simple call
to the DLL routine wrapped in a
call to Win32DLLCheck. The
GetModuleHandle API is used to find
the module handle of the DLL in
question. Figure 5 and Figure 6
show the application raising
exceptions with the custom mes-
sage strings, to prove that the
mechanism works as described.

Update To File I/O Error
In Issue 51, I discussed a couple of
ways to get information on Win-
dows error codes. I mentioned
looking them up in the Win32 SDK
Reference help file shipped with
Delphi, or by browsing through the
Windows unit. Thanks are due to
Frank Hagenson who reminded me
that Windows has a command-line
tool that also gives help on
Windows error codes.

The error code in Issue 51’s
Clinic question was 32. To get a
description of this code you can
run this Windows NT com-
mand-line:

net helpmsg 32

or this Windows 95 or 98 com-
mand-line:

net help 32

Running the command on Win-
dows 95 produces the description:
‘Error 32: The specified file is in use
by another process. Try again later’.

	QuickReport And Printers
	File Copying
	ActiveX Warning
	Custom Error Strings From DLL Routines

